ReviewsPage 1 of 3
The $70 Raspberry Pi AI Camera comes only a few months after the identically-priced Raspberry Pi AI Kit, the company’s first foray into AI accessories, and promises an…
Arturia’s AstroLab, an ’avant-garde’ stage keyboard, is a wonderful fusion of hardware and software, attempting to give a tangible home to the company’s vast and beloved library of software instruments.
Running local AI models on SBCs has been a thing for a while now, with many boards even featuring built-in NPUs or other hardware specifically catered for AI…
The LattePanda Mu is the company’s first foray into SoM territory, packing an affordable Intel Processor N100 CPU and seemingly attempting to give the swathes of ARM-based SoMs…
SunFounder’s newest Raspberry Pi-based gizmo is the do-it-yourself Pironman 5 “Mini PC” case, drawing inspiration from flashy high-end PCs — and taking your regular old Raspberry Pi 5…
If you were to squint just right, Clockwork Pi’s DevTerm, with its retro-inspired ultra-wide display and characteristic two-tone body could pass for a TRS-80 Model 100. Fully inspired…
Still, the Youyeetoo X1 sits firmly as one of the (if not the) cheapest Intel-based SBCs on the market currently – and we see it as a perfect way to get a capable machine to tinker with or embed into your next project. With our only real gripe being related to the RAM implementation being only single-channel, we can comfortably, and especially for the price, recommend the Youyeetoo X1 to anyone currently looking for a general-purpose SBC.
Radxa’s SBC offerings are well-regarded by the maker community. One of their earlier boards, the Raspberry Pi Zero-format Radxa Zero, left us with generally positive impressions. Naturally, this made us pretty excited about getting our hands on a newer board of theirs. With all the hype around Rockchip’s RK3588 series, we were rather curious about Radxa’s take on the popular SoC.
Elecfreaks’ first Wukong breakout board was designed for the BBC micro:bit, but a more recent version designed for the Raspberry Pi Pico is also available. This newer variant, dubbed the Wukong 2040, is exactly what we’ll be taking a look at today.
Fully compatible with the Raspberry Pi Pico pinout, the Wukong 2040 naturally supports a wide array of boards – the Raspberry Pi Pico and Raspberry Pi Pico W are obviously supported, as are third-party ones following the Pico format, like Banana Pi’s BPi-Pico-RP2040 and BPi-PicoW-S3.
So, overall – the Orange Pi Zero 2W is undoubtedly a well-designed SBC. With good software support and decent performance, there’s a lot to love here, especially if you’re searching for a compact system. The expansion board is what truly seals the deal for us, as it brings full-size connectors only found on larger boards and packs them into a tiny footprint – while managing to keep the price extremely competitive.
The market is more competitive than ever, and boards powered by the RK3588 no longer have the enormous performance lead they used to, letting other systems’ strengths shine. Squashed between the Raspberry Pi’s gargantuan community and flawless software compatibility of Intel-based SBCs, RK3588 boards have to work much harder to prove themselves.
The Orange Pi 5 Plus definitely does just that, being one of the finest boards equipped with the powerful ARM SoC. Its connectivity features and video capabilities are unrivaled, and its performance is still top-notch.
The team over at Seeed Studio has seemingly jumped aboard the hype train surrounding Espressif’s ESP32 MCUs. Their first foray way rather shy, testing the waters with an…
Being the most powerful SBC we’ve seen so far comes at a price, though. The i5-1340P gulps down power, and requires careful planning if the system is to be embedded into a project.
Overall, the LattePanda Sigma is a major step forward for the LattePanda brand, and for SBCs as a whole. If you’ve got the means to afford it, there is really no better x86-based SBC choice on the market at the moment.
The Orange Pi 3B is a budget SBC. For only $30 it offers a surprisingly streamlined and well-optimized system which is quite pleasant to use. As a Raspberry Pi 3 replacement it delivers, offering more sheer processing power, actual cryptographic acceleration and a very basic, but useable NPU. The Orange Pi 3B is perfectly suited as a small IoT edge node or a home automation server. Android supports makes it viable for digital signage or as a media server — or even as a tiny retro gaming box.
With all of this said, the Orange Pi 3B currently might just be the most capable low-cost SBC on the market.
Foldables aren’t exactly known for being the most practical phones. The target audience for these isn’t, and likely never will be the average smartphone user, which is more…
Today’s VisionFive 2 board comes from StarFive, a Chinese company closely linked to SiFive, and features StarFive’s own JH7110 SoC. It also features up to 8 GB of RAM and is touted as “the world’s first high-performance RISC-V single board computer (SBC) with an integrated GPU”. While this might seem a bit oddly specific, it’s important to remember that this isn’t StarFive’s first rodeo with SBCs. VisionFive 2’s predecessor, the aptly named VisionFive, notably lacked any sort of dedicated 3D GPU hardware. Thankfully, through a partnership with Imagination Technologies, StarFive managed to get the BXE-4-32 MC1 GPU included in the JH7110 chip.
Move over Pi 4, there’s a new slice of Pi on the block.
It’s finally happening. The successor to the popular, but aging Raspberry Pi 4 Model B is finally here – the aptly-named Raspberry Pi 5 Model B will be available to purchase by the end of October. Spending an unusually long time at the helm – four years – and receiving a significant boost in 2020 with the release of the 8 GB model, the retiring legend truly had a good run.
FriendlyElec did a lot to enable easy and quick OS installation. Sacrificing some traditional connectors is a bit of a bummer, but with the well-designed case in mind, it’s definitely not as major of a drawback as it initially seems. What we dislike is the lack of a power switch and wireless connectivity, the latter of which will generally take up one of the two USB ports. Even with minor design flaws, the R6S is a great system based on the modern and powerful RK3588S chip with top-notch software support. It’ll perform great no matter the task: from IoT applications to home routing and various types of servers, the R6S can be relied on.
The Mixtile Blade 3 is a well-made computer, primarily designed for clustering. This is the main idea behind the inclusion of the U.2 connector, along with another daughterboard meant for interconnecting several Blade 3 units using custom-made PCIe cables utilizing SFF-8643 connectors (offering much better cluster performance than traditional Ethernet-based clusters), as well as providing a SATA 3 connection and a 12V 6-pin power connector.
Currently, however, the Mixtile Blade 3 is only useable as “just” an SBC computer, which is why we didn’t mention much about its planned cluster functionality earlier during the main review sections. 16 GB of RAM and 128 GB of eMMC, as well as great external storage connectivity are all major elements adding up to quite an appealing package, viable as a tiny ARM-based server, media center, or even a desktop replacement.
The LilyGO T-HMI has landed before us, packed in a tidy semi-transparent plastic box, surrounded by black cushioning foam. This tiny dev board is based around an ESP32-S3R8 MCU and a 2.8” resistive TFT touchscreen with a 240 x 320 resolution. The set also includes a small plastic stylus (very similar to the one used on some older Nintendo handheld consoles) and a pair of cables: one for connecting a 5V battery and one for connecting a Grove sensor (Grove is the name of Seeed Studio’s plug-and-play system of sensors and peripherals).
Before continuing, we’d like to thank the manufacturer for providing us with a review unit.
For the 160 USD MSRP, the BPi ARMSoM W3 brings a lot to the table, giving users a powerful SoC, solid RAM, on-board storage and a decent set of IO. The build quality is, like most Banana Pi boards, good, and all of the provided OSs work well. For home users, there are better (and cheaper) solutions which offer less robust connectivity, but often are significantly smaller and come with built-in cooling. On the other hand, for industrial consumers, or those looking to create custom designs implementing Banana Pi’s ARMSoM series of core boards, the ARMSoM W3 represents a reference design and a great development starting point.
There is absolutely no doubt that teenage engineering’s OP-1 is one of, if not the most influential, synthesisers of the decade. However, as we’ve already seen multiple times with the Swedish brand’s products, trying to fit them into a single conventional category doesn’t do them justice. The OP-Z is more than just a sequencer, the TX-6 is more than just a mixer, so it only makes sense for the OP-1 to be more than just a synthesiser.
Aside from the legendary synth engines, the OP-1 features a powerful sampler, drum machine, effects processor, sequencer and virtual tape recorder, making the whole package feel much more like a DAW than a simple instrument.
It’s no secret that NVIDIA’s AI SBCs run toasty at times. The massive stock passive heatsink is generally good enough for the job, but due to the presence of an on-board fan header on many carrier boards, it’s simple enough to install an active solution.
Still, the well-respected ICE Tower lineup of SBC cooling solutions has made its way onto the Jetson, and promises significantly better thermals than possible with passive systems thanks to high-performance desktop-like heatsinks and copper thermal pipes.
When we reviewed the awesome Orange Pi 5, we noted some minor throttling, but still suggested the use of a heatsink, at least. Despite the RK3588’s impressive abilities at minimising performance drops during intense computation, the core clocks undeniably drop as the chip approaches 90°C. Needless to say, running that hot isn’t really healthy for an SoC, either.
To solve this, the team over at 52Pi has produced a tweaked version of the ICE Tower cooler for the Orange Pi 5. Fundamentally, it’s the same idea: chunky copper heat-pipes, large heatsink and an RGB fan in a desktop-like cooling system.
These two boards, as of the time of writing, sell for around $17 and $25, for the Maker and Zero versions, respectively. The PoE expansion board is $4, and is a worthwhile addition.
Our overall experience is mixed. Armbian CLI works well, but much better OS support is required. More performant boards are becoming the standard, but for project which don’t require a GUI, the Banana Pi BPi-P2 is more than enough.
PoE capability is the saving grace — enabling sleek solutions for IoT nodes. As an edge sensor data collection station with PoE, the Banana Pi BPi-P2 series offers one of the cheapest complete packages on the market, starting at just $21.
For the price, Intel truly gives a lot. A top-notch port selection, great performance, fast connectivity and great thermals grace this tiny computing box, making it capable enough to be an everyday computer. Its true strengths, however, lie in its power efficiency and expandability, making it a serious tool for computing at the edge or for smaller servers. It’s perfect for large scale deployment in education, as well as for smaller workspaces requiring dedicated computers for certain tasks.
An intriguing platform for development based on the ESP32S3-based Wroom-1 module, equipped with a color TFT LCD, WiFi and BLE 5, a Grove port, a mic, a speaker, an SD slot, and a rotary encoder…
Creating a functional device of your own isn’t exactly easy if you start with a blank piece of paper. Development systems are tools that make it easier to try out an idea, but they can hardly be stuffed into a functional product. With its devices, LilyGO tries to guide users one step closer to the finished product, but not without some sacrifices in the form of a vastly reduced GPIO. TEmbed is a unified system consisting of an ST7789 1.9′′ 320-by-170 TFT color LCD, a rotary encoder, an array of 7 RGB APA102 diodes, a microphone, a speaker, one Grove connector for external sensors, an SD card slot, and a battery connector. The backbone of the T-Embed is the Espressif ESP32S3 SoC, with 16 MB of Flash and 8 MB of PSRAM memory. The Wroom-1 module it’s situated in also provides WiFi 802.11 b/g/n and BLE 5 support.
NVIDIA’s Jetson series of modules has always brought an exciting amount of processing power for mobile and edge AI applications—this being their intended use case. The Jetson lineup also includes several developer kits: modules on reference carrier boards in a format quite similar to single board computers. For the sake of simplicity, we’ll even call these boards “SBCs” in the rest of this review. Let’s not dwell on the semantics for too long—if it looks like a duck and quacks like a duck, it probably is a duck.
The SBC we’re taking a look at today is NVIDIA’s new Jetson Orin Nano Developer Kit, which was announced this March at NVIDIA’s GTC 2023 event. The module it’s based on has been around slightly longer but has only just now made it into the SBC format. Designed for rapid prototyping, it brings a powerful set of AI hardware and software in a standalone form factor.
The excitement around Raspberry Pi’s product releases is always massive – their products, shaped by years of community (and top-notch first-party) support are representative of the way a piece of development tech is meant to function. From perfectly stable SBCs with mature OSs to the Raspberry Pi Pico MCU board which has been a community favourite since its 2021 debut, ease-of-use and and a highly polished user experience differentiate the company’s offerings from those of its rivals.
The Raspberry Pi Debug Probe which we’re taking a look at today explains its purpose quite splendidly by name alone: it’s an open-source debug probe providing both an UART and an ARM SWD interface, all at a very attractive $12 price.
The Robotistan PicoBricks Zero to Hero Development Kit strikes us as a product worthy of your time. With well though-out projects, huge community support thanks to the utilisation of a popular platform and good IDE support, it’s quite a capable package. At its $49, $69 and $89 asking price for the Base, IoT Expert and Zero to Hero kits, respectively, the PicoBricks lineup offers a lot to those looking to embark on an maker journey.
Banana Pi’s BPI-Pico-RP2040 is a cleverly designed iteration of Raspberry Pi’s Pico design. Experience gained over the course of two years allowed the Banana Pi team to present their own idea of a RP2040-based development kit. We’ve received our unit from the manufacturer for review purposes.
It’s worth noting that in just over two years since its January 2021 release, the RP2040 netted itself quite a lofty market position. Even though it’s based on the ARM Cortex M0+, a decade-old platform, it has many specific peripherals and unique features which set it apart from the droves of M0-based systems releasing as of recent – look at some of Ti’s new MSP chips (MSPM0G and MSPM0L series) or ST’s STM32C0 chip series, to name but a few.
However, as we stated a moment ago, Raspberry Pi did something special with the RP2040. It’s the only (at least known to us) dual-core purely Cortex M0+ chipset.
Yet another SBC landed on our review desk. This time around it’s the Orange Pi 5, a recently released RK3588S-based high-end model from Orange Pi – a company whose main products are ARM-based SBCs oriented towards makers. These are the most common type of SBC – with significantly more rare x86-based ones forming the majority of the rest (RISC-V CPUs are also used in single-board computers, rather seldomly, however).
Pickering’s new series of reed relays have an impressive data-sheet. Distinguished by their impressive power rating in a tiny package, they enable highly reliable high-power relays to fit in a product of any size.
The LattePanda 3 Delta is a gorgeously made Windows 11-capable x86 SBC with great performance and heaps of connectivity options. None of the competing ARM-based systems come quite close, and most of the x86-based systems don’t offer nearly the same level of polish. The $279 asking price is also impressively low, especially with current inflated market prices in mind.
We’ll be direct – don’t skip out on this one!
The Galaxy Z Fold 4 is Samsung’s best and latest. It’s their absolute flagship, packing all the tech they’ve got. It’s impressive, and it’s got the highest productivity potential of all the mobiles on the market right now, but its near-$2k price tag puts it in the same ballpark as much more powerful traditional phone-and-laptop combinations.
Miniware makes tiny things. The company specialises in shrinking usually bulky and hefty equipment into tiny pocket-sized gadget while sacrificing the least amount of features. Naturally, this is a tricky feat which requires a good bit of engineering know-how.
Best known in the maker circles for their TS-series soldering irons, Miniware is a company which produces quite the array of products – from tiny portable oscilloscopes and logic analysers to SMD tweezers (our review here) and more. So far we’ve had quite a positive experience with their products, and the general community consensus is similar.
This is why we’ve already got high hopes for the review unit we’ve got in our hands – the MDP-P906 PSU. The manufacturer provided us with the unit free of charge, but does not in any way influence our opinions stated here.
As single board computers progress and become more and more powerful, so does their use as a desktop replacement become ever more viable. We’ve talked about this before – with several companies marketing their products as capable of such feats while accomplishing the task with varying levels of success. We’re not quite there yet (with the exception of some Intel-based SBCs which encroach upon the desktop territory both in performance and price), ARM SoCs are quickly catching up to their x86 siblings and in some high-end cases even surpassing them.
But as technology tends to do, what once was the very summit of our prowess has since slowly trickled down and seeped into inexpensive parts, enabling the advent of many technologies in the consumer field. With that being said, it’s not hard to fathom the incredibly low prices and (relatively) powerful performance modern SBCs bring. Sure, the Raspberry Pi was the trendsetter and before its debut it had been incredibly difficult to obtain any serious “disposable” computational power. Nowadays, however, with so many contenders available, the SBC form factor is a market in its own right.
Despite the fierce competition, the latest entry in Raspberry Pi’s portfolio, dubbed the Pi 4B (our review of it can be found here), remains one of the most powerful and the most popular board on the market. Naturally, a wide array of accessories for the model have popped up, some of which are quite necessary thanks to the Pi’s poor thermal performance. Cases have also been popular from the inception of the SBC as protecting a computer’s guts from dust generally seems like the right idea.
In a market saturated with boards, cooling solutions for the former and boxes to shove the former two into, how do you stand out?
Sinovoip, the company behind the Banana Pi series of development kits and SBCs had an interesting product idea: to create a Raspberry Pi Pico pin-compatible development kit based on the 240 MHz Tensilica LX7 ESP32-S3 dual-core SoC. Instead of a dual-core RP2040 with 264 KB of SRAM, we have the LX7 based chipset with 512kB of SRAM and 2.4 GHz support, alongside Bluetooth 5LE (no fancy Pio state machine stuff, however).
We have the speed, processing power, pin-to-pin compatibility, the same dimensions, and ultimately the same target audience. Even though the ESP32-S3 features 45 GPIO pins, the form factor has to sacrifice quite a few of them, breaking out only 24. A Neopixel LED has been added on-board.
Unlike the RP2040, which can be programmed using CircuitPython, MicroPython and C (Processing), the BPi supports CircuitPython, C and Espressif’s own IDE.
CircuiPython is pre-loaded on the board is geared towards STEM projects. All Adafruit ESP32-S3 Feather examples worked perfectly – with potential small changes of GPIO pin numbers. Standard WiFi connection examples also worked perfectly first try – so its safe to say that the board is fully compliant.
In the last issue we’ve taken a look at two of Würth’s excellent boards designed for the Feather ecosystem – the MagIC3 FeatherWing and the Sensor FeatherWing. Both of these offer great features and ease-of-use for a low price. In our tests, both units delivered exemplary results and demonstrated the flexibility of the format.
Today we’re taking a look at two more Würth boards which were generously provided by the manufacturer – in different form actors, but both based on their own Calypso WiFi module.
The Calypso module itself is a shielded subunit with castellated connectors intended to be used as a complete WiFi subsystem for embedded devices. At the heart of the Calypso lies a networked MCU containing a 802.11 NWP and an ARM M4 core. Additional timing and RF external antenna-driving circuitry is also located under the shield. What truly sets it apart, though, is the ProWare firmware which controls the entire TCP/IP stack and network connectivity.
Calypso’s main goal is completely delegating all connectivity processing from the main MCU or application processor onto its own subsystem, thus freeing up system resources. Compared to most other options which communicate using wide parallel connections and require the main controller to constantly maintain the connection using SDK routines, Calypso uses a simple UART connection and AT commands. This is akin to the way Würth’s sensors handle data – offering pre-processed digital data streams instead of raw values which require additional software calculations and conversion.
Sinovoip’s Banana Pi family has gotten another interesting member. In our hands today is an MCU development board with the newest Espressif ESP32-S3 SoC – a dual-core Xtensa LX7-based chip clocked at 240MHz. The board’s called BPI-Leaf-S3 and shares the form factor of Espressif’s own ESP32-S3-DevKitC-1 system, with which it shares the pinout. This does make it a drop-in replacement for the latter in projects. There’s 512kB RAM and 2MB pseudo-SRAM on MCU, alongside 8MB of external Serial NOR Flash.
ESP32-S3 SoC, like all ESP32 chipsets, has integrated radios – namely the 2.4 GHz, 802.11 b/g/n Wi-Fi and Bluetooth 5 (supporting the Low Energy Physical Layer – with long range and fast 2 Mbps data transfer). Out of the 45 GPIO pins available on the SoC, the board breaks out 36 (among which pins with specialised SPI, I2S, I2C, PWM, RMT, ADC, UART, SD/MMC host and TWAITM functions are available).
The board also features RST and BOOT keys as well as one Neopixel RGB LED on pin 48. What sets the Leaf apart is the USB Type-C connector, a 3.7V Li-ion battery port (with a charging circuit – akin to those Adafruit’s Feather boards have) and a separate four-pin I2C (GND, 3V3, SDA, SCL) connector for attaching hardware to the main SoC serial bus.